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Neutrino Chiral Oscillations
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Under certain conditions a localized wave packet exhibits Zitterbewegung. A
similar phenomenon occurs for the chirality of a massive particle. In the case of
massive neutrinos, since they are detected via the V±A weak charged currents,
this oscillation may even explain the ª missingº solar neutrino experiments. The
neutrino remains a mass eigenstate, but contains an almost sterile right-handed
component. This qualitative discussion opens up a number of interesting
physical considerations.

1. INTRODUCTION

We are interested in chiral oscillations as a possible explanation of the

missing solar neutrino problem because neutrinos with positive chirality are
decoupled from the neutrino-absorb ing charged weak currents. In recent

years there has been enormous interest in the problem of the missing solar
neutrinos (Bahcall, 1989; Langacker 1994a, b). With the inclusion of the

latest experimental results, approximately one third of the expected solar

electron neutrino flux, within the energy ranges measured, is missing in earth-

bound experiments (Davis et al., 1968; Abazov et al., 1991; Hirata et al.,
1991; Anselmann et al.,1992, 1995; Abdurashitov, et al., 1994). The related
search for neutrino masses was stimulated by the mass oscillations invoked

as the most promising hypothesis to explain the missing neutrino data. If the

neutrinos have mass, then it is possible to postulate mixing between known

neutrino species (electron, muon, and tau) (Pontecorvo, 1967; Gribov and

Pontecorvo, 1969; Wolfenstein, 1978; Mikheyev and Smirnov, 1986) or

between the known neutrinos and higher mass neutrinos including sterile
neutrinos (Gell-Mann et al., 1979; Yanagida, 1979). Such assumptions

together with the violation of individual (e, m , t ) leptonic number permit
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oscillations between neutrino species. This hypothesis has been extensively

studied in the literature (Hata and Langacker, 1994, 1995; Foli et al., 1995;

Bahcall, 1995; Langacker, 1995; Gelmini and Roulet, 1995; Bahcall and
Ulmer, 1996), and is characterized by parametrization with the differences

between the squared values of neutrino masses and, of course, by the mixing

angles. As we shall see below, our chiral oscillations are quite different, and

do not involve any mixing angles.

Let us put aside the neutrino for a moment and recall some basic facts

about zitterbewegung (Sakurai, 1987). In first quantization, the relativistic
Dirac equation predicts the existence for a spin-1/2 particle, under certain

conditions, of a time dependence (oscillation) in the average of the position

variable (the velocity eigenvalues associated with this oscillation are 6 c even

for a massive particle). This phenomenon, known as zitterbewegung, is a

consequence of the noncommutation of x with the Hamiltonian H. Since our

calculation for chirality follows an almost identical line of reasoning, we
shall not give here any details of the demonstration of zitterbewegung. We

recall the possibility to avoid zitterbewegung by redefining the space variable

via the Foldy±Wouthuysen (1950) transformation. However, this introduces

a very complicated position variable and is in contrast with the justification

of the Darwin (1928) term in atomic physics. In fact, the existence of zitterbe-
wegung is no stranger than the existence of negative-energy solutions, on

which it depends. Recall that zitterbewegung is only manifest for wave

functions with significant interference between positive and negative frequen-

cies. In the following we shall talk of frequencies in plane waves and not of

energies. Frequencies and energies coincide only for plane waves. For bound

states and localized production the Hamiltonian is never the free-particle
one and frequency and energy no longer coincide. For example, the energy

eigenstates of the hydrogen atom are not plane wave solutions and indeed

contain both types of frequency, but nonetheless they represent definite

energies.

For an electron, model calculations (Itzykson and Zuber, 1985) predict

an oscillating zitterbewegung frequency of around 1021 cycles per second,
far too rapid at present for any hope of direct measurement. However, we

mention as an aside that if the neutrinos are massive, one of them, probably

the electron neutrino, is the least massive of all known fermions and as a

consequence its zitterbewegung frequency may even be within the capacity of

direct experimental time resolution, even if we cannot envisage any practical

experimental test, given the neutrino’ s ephemeral properties.
The starting point for what follows is the observation that the creation

of a particle is always a localized operation, notwithstanding the use in

perturbation theory of plane waves (the asymptotic as well as unperturbed

wave functions). For example, a particle produced in the laboratory is obvi-
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ously localized; sometimes its origin is measured to within a few micrometers

in vertex detectors. Normally this fact is ignored or considered irrelevant.

Nevertheless, the creation of a particle involves, even if for only short times,
a non free Hamiltonian which fortunately we do not need to know for our

present calculations. We shall simply assume the form of the wave function

at creation as a Gaussian, to ease calculations, hoping that this assumption

at least approximates the true wave function. The average chirality of the

particle then exhibits a time dependence similar to zitterbewegung, and it is

this type of oscillation which we consider in this paper.

2. CHIRALITY TIME DEPENDENCE

If a spin 1/2 particle is massless and is produced in a chiral ( g 5) eigenstate,

then its chirality is a constant of motion in addition to being Lorentz invariant.

These properties no longer hold for Dirac particles with mass. The free-

particle Hamiltonian

H 5 2 i a ? - 1 m b (2.1)

which we shall assume to represent the time-evolution operator for times
subsequent to the creation of the spinor (t 5 0), does not commute with the

chiral operator g 5 because of the b ( 5 g 0) term in H. Specifically,

2 i - t ^ g 5 & 5 ^ [H, g 5] & 5 2m ^ g 0 g 5 & (2.2)

where m is the mass of the spinor, assumed a mass eigenstate. The mean

value on the righthand side of the above equation is given explicitly by

^ g 0 g 5 & 5 # d 3x C (x) g 5 C (x) (2.3)

where C may be expanded in terms of plane wave solutions in the stan-

dard way:

C (x) [ # d 3k

(2 p )3

m

E o
2

a 5 1

[a a (k)u a (k)e 2 ikx 1 b *a (k)v a (k)e ikx] (2.4)

where E denotes the positive quantity

E [ k 0 5 ! k2 1 m 2

The normalization of the spinors,

v 1
a (k)v b (k) 5 u 1

a (k)u b (k) 5
E

m
d a b

2 v a (k)v b (k) 5 u a (k)u b (k) 5 d a b
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and the normalization condition for C (x),

# d 3x C +(x) C (x) 5 1

impose the following constraint on the coefficients a a (k) and b a (k):

# d 3k

(2 p )3

m

E o
a

[ | a a (k) | 2 1 | b a (k) | 2] 5 1 (2.5)

Now, as for zitterbewegung, the formula (2.2) does not necessarily imply

a physical effect. In fact it is easy to see that for wave packets made up of

frequencies of only one given sign, the Dirac equation for the spinors u (k)

and v (k)

(k/ 2 m)u (k) 5 u(k)(k/ 2 m) 5 0

(k/ 1 m)v (k) 5 v(k)(k/ 1 m) 5 0

leads to a zero average in equation (2.2). To demonstrate this point, let us

superpose only positive frequency plane waves. Computing equation (2.3),
we find

^ g 0 g 5 & 5 # d 3x
d 3q

(2 p )3

d 3k

(2 p )3

m 2

EE 8 o
a , b

a *a (q)a b (k)u a (q) g 5u b (k)e i(q 2 k)x

5 # d 3k

(2 p )3

m 2

E 2 o
a , b

a *a (k)a b (k)u a (k) g 5u b (k) (2.6)

where E 8 [ q 0 5 ! q2 1 m 2. Now, as a consequence of the Gordon-like
chiral identity

u a (q) g 5u b (k) 5
1

2m
u a (q)(q/ g 5 1 g 5k/ )u b (k) (2.7)

we have

u a (k) g 5u b (k) 5 0

and so we obtain a zero average for g 0 g 5. A similar proof works for a

superposition of only negative-frequency plane waves.

On the other hand, if both frequencies are present the interference terms
yield an oscillation in chirality,

^ g 0 g 5 & 5 # d 3x
d 3q

(2 p )3

d 3k

(2 p )3

m 2

EE 8 o
a , b

[b a (q)a b (k)v a (q) g 5u b (k)e 2 i(q 1 k)x 2 h.c.]

5 # d 3k

(2 p )3

m 2

E 2 o
a , b

[b a (kÄ )a b (k)v a (kÄ ) g 5u b (k)e 2 2iEt 2 h.c.] (2.8)
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where kÄ 5 (E, 2 k). The Gordon-like chiral identity for cross terms,

v a (q) g 5u b (k) 5 2
1

2m
v a (q) (q/ g 5 2 g 5k/ )u b (k) (2.9)

gives us the nonnull equivalence

v a (kÄ ) g 5u b (k) 5 2
E

m
v a (kÄ ) g 0 g 5u b (k) (2.10)

From now on we will work with the following (Pauli±Dirac) representation

of gamma matrices:

g 0 5 1 12 0

0 2 12 2
g i 5 1 0 s i

2 s i 0 2 (2.11)

g 5 5 1 0 12

12 0 2
In such a representation the spinor solutions are given by

u a (k) 5 1 E 1 m

2m 2
1/2

1 x a

s ik i/ (E 1 m) x a 2 (2.12)

v a (k) 5 1 E 1 m

2m 2
1/2

1 s
ik i/ (E 1 m) x a

x a 2
where conventionally

x 1 5 1 10 2 , x 2 5 1 01 2
Using equations (2.11) and (2.12), we easily check that

2 g 0 g 5u b (k) 5 v b (kÄ )

and so, combining this last result with equation (2.10), we obtain

v a (kÄ ) g 5u b (k) 5 2
E

m
v a (kÄ ) g 0 g 5u b (k) 5

E

m
v a (kÄ )v b (kÄ ) 5 2

E

m
d a b

(2.13)
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Then equation (2.2) becomes

- t ^ g 5 & 5 # d 3k

(2 p )3

m 2

E 2 o
a

[ 2 2iEb a (k)a a (kÄ )e 2 2iEt 1 h.c.] (2.14)

After performing the time integration, we find

^ g 5 & (t) 5 ^ g 5 & (0) 1 # d 3k

(2 p )3

m 2

E 2 o
a

[b a (k)a a (kÄ ) (e 2 2iEt 2 1) 1 h.c.] (2.15)

Even this formula does not necessarily imply a significant physical
effect. For example, we shall demonstrate below that for a Gaussian initial

wave function and if the initial state has average chirality zero, the oscillations

of the 6 chiralities cancel and there is again no overall oscillation.

At this point we wish to discuss an apparent paradox. Now, for any

plane wave solution of the Dirac equation with mass, the rest-frame wave

function is always an equal mixture of both chiralities. This is easily seen by

c 5
1 1 g 5

2
c 1

1 2 g 5

2
c

5 c + 1 c 2 (2.16)

where c 1 , 2 correspond to chirality 6 1, respectively. Furthermore, we have

that

k/ c 6 5 1 m c 7

k/ c 6 5 2 m c 7

where 1 m appears for positive-energy plane waves and 2 m for negative

ones, and where k is the 4-momentum of the particle. Thus, in the rest frame

(k 5 0) we find, since ( g 0)2 5 1, that

| c + | 2 5 | c 2 | 2 (2.17)

Note that this result is not Lorentz invariant, since a Lorentz boost is not a
unitary transformation. Thus, while the cross section is Lorentz invariant,

the chiral probabilities are not. This seems to suggest that cross-section

measurements are chiral independent. We seem to have an argument against

the physical significance of chiral oscillations.

The reply to this objection based upon the Lorentz invariance of the

cross section is simply that in any given Lorentz frame chiral oscillations
are manifestly important because of the chiral projection form (V±A) of the

charged weak currents. The chiral probability variations produced by Lorentz

transformations (even if g 5 commutes with the Lorentz generators) are auto-

matically compensated by the wave function normalization conditions and
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the Lorentz transformations of the intermediate vector bosons and other

participating particles.

This situation is similar to the apparent contradiction between the follow-
ing facts. In all known processes the neutrino is produced as an almost left-
handed helicity eigenstate because created dominantly in an ultrarelativistic

state (where chirality , helicity) by the V±A interaction and hence with

average chirality close to 2 1. But, in its rest frame the (plane wave) neutrino

has average chirality zero. Viewed from the neutrino’ s rest frame, there is

no preference between 1 and 2 chiralities. Is this not in contradiction with
the dominance of left-handed neutrinos in nature? No, because while there

exist frames common to almost all neutrinos in which the chirality is almost

pure 2 1, there exist many, but noncoincident frames for which 1 1 chirality

dominates for each given neutrino.

We conclude this section with a discussion of another important question:

in which frame shall we assume a given form of localization? A spherical
Gaussian assumption, suggested primarily by its simple integration properties,

is certainly not frame independent. Thus if the sun is the relevant frame, then

we can assume, as we shall do below, that the neutrinos are created as almost

pure negative chiral eigenstates. Chiral oscillations then occur and this in

turn implies that a measurement of the neutrino solar flux on earth will detect
an ª apparentº loss of neutrinos.

Obviously, any neutrino created in the sun can reasonably be considered

localized within the solar core at time zero. It is not even excluded that the

relevant distance scale for localization may be much smaller, such as the

dimensions of the nucleons within which the decaying quark current gives

rise to the neutrinos. In this case, however, we would have to take into
account the wave function of the parent hadrons. In the extreme hypothesis

that the distance of localization (at creation) of the neutrinos is the Compton

wavelength of the intermediate vector boson W, we will see that the chiral

oscillation is very small.

3. A GAUSSIAN MODEL

Let us assume that at creation the neutrino wave function is given (or
approximated) by a Gaussian function in x with range d for the corresponding

probability distribution,

C (0,x) 5 ( p d 2) 2 3/4 exp( 2 x2/2d 2) w (3.1)

with the spinor w normalized by w +w 5 1. Since we have already noted that

both theoretically and experimentally the ultrarelativistic neutrinos are created
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in almost pure 2 1 chiral eigenstates (massive neutrinos cannot be rigorously
in a chiral eigenstate), we assume for w the approximate form

w [ 1 w
2 w 2 (3.2)

with w a two-component spinor, such that w + w 5 1/2.

Equation (3.1) may be used to obtain the values of the coefficients a a

(k) and b a (k),

a a (k) 5 (4 p d 2)3/4 exp( 2 k2d 2/2) u 1
a (k)w

b *a (k) 5 (4 p d 2)3/4 exp( 2 k2d 2/2) v 1
a (k)w

Note that starting with a negative chiral eigenstate, we find b *a (k) 5
2 a a (k). Equation (2.15) then yields the time-dependent value of the average
of g 5,

^ g 5 & (t) 5 2 1 1 # d 3k

(2 p )3

m 2

E 2 o
a

[a *a (k)a a (kÄ ) (1 2 e 2 2iEt) 1 h.c.] (3.3)

which after algebraic manipulations becomes

^ g 5 & (t) 5 2 1 1 NCO (3.4)

where NCO (neutrino chiral oscillation) indicates the following integral:

NCO 5 # d 3k

(2 p )3

m 2

E 2 (4 p d 2)3/2 exp( 2 k2d 2) [1 2 cos(2Et)] (3.5)

Alternatively, we may quote the probability of finding the (1 2 g 5) /2 compo-

nent relevant for weak charged interactions, which coincides with its mean

value:

^ 2 & [ # d 3x C +(x)
1 2 g 5

2
C (x)

Explicitly, we have

^ 2 & 5 1 2
1

2
NCO (3.6)

By changing the initial chirality to 1 1,

w ® wÄ [ 1 ww 2 (3.7)
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we obtain b *a (k) 5 a a (k), and

^ 1 & 5 1 1
1

2
NCO (3.8)

Consequently, we find the anticipated result that for average initial chirality

zero, there is no oscillation.

In spherical coordinates, equation (3.5) becomes, after angular

integration,

NCO 5
4d 3

p 1/2 #
`

0

dk
(mk)2

E 2 exp( 2 k2d 2) [1 2 cos(2Et)] (3.9)

where k [ | k | . For future considerations, we prefer to rewrite equation (3.9)

after the change of variable r 5 kd:

NCO 5
4

p 1/2 #
`

0

d r r 2 1 1 1
r 2

m 2d 2 2
2 1

3 exp( 2 r 2) H 1 2 cos F 2mt 1 1 1
r 2

m 2d 2 2
1/2

G J (3.10)

This integral contains essentially two unknown dimensionless quantities mt
and md. We may resort to numerical calculations or under certain conditions

derive approximate values. We shall analyze two ranges of md, namely md
À 1 (in this case we have to consider different ranges for mt) and md ¿ 1.
We also shall treat an intermediate point md 5 1.

Let us start with the case md À 1. Since the exponential term which

appears in (3.10) kills the integrand for large values of r , the relevant range

of r is of order one, and we begin our estimate by dropping the r dependence

in the denominator. However, the argument of the cosine term

2mt 1 1 1
r 2

m 2d 2 2
1/2

5 2mt F 1 1
1

2

r 2

m 2d 2 1 O 1 r 4

m 4d 4 2 G
needs careful handling; in fact we must consider two ranges of values for mt.

(a) For mt $ m 3d 3 the integrated oscillating r dependence of the cosine

tends to zero. In this case NCO is very close to 1 and so the expectation

value for the negative chirality average becomes

^ 2 & ,
1

2
[md À 1, mt $ m 3d 3] (3.11a)

Here half of the neutrinos are invisible because of the ª wrongº chirality and
participate only in elastic neutral current interactions.
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(b) For the remaining case mt , m 3d 3, neglecting terms of the order

mt/m 4d 4 , 1/md or higher, we can write

NCO ,
4

p 1/2 #
`

0

d r r 2 exp( 2 r 2)

3 F 1 2 cos(2mt) cos 1 mt

m 2d 2 r 2 2 1 sin(2mt) sin 1 mt

m 2d 2 r 2 2 G
After straightforward manipulations we find

^ 2 & 5
1

2

1
cos(3±2 arctan a ) cos(2mt) 2 sin (3±2 arctan a ) sin(2mt)

2(1 1 a 2)3/4 (3.11b)

where

a 5
mt

m 2d 2 [md À 1, mt , m 3d 3]

Here it must be noted that the time t for the arrival of solar neutrinos cannot

be taken as a fixed value because of the diverse distance from the earth to

interior solar points ( D t /t , 0.5%). Thus we must perform an average over

this time range. Note that D t , d, hence md À 1 implies m D t À 1. This
averaging is in general a complicated calculation which we do not perform

here. It is simple only when the oscillatory terms average to zero. In these

latter cases we can neglect the time dependence part of equation (3.10) and

consequently of equation (3.11b). Indeed in this limit we can reconsider

equation (3.10) and derive a closed expression for NCO in terms of the

complementary error function,

NCO 5 2m 2d 2 [1 2 md ! p e m2d 2
Erfc(md )] (3.12)

For large md [but not neglecting terms of order 1/m 2d 2 as in equations
(3.11a)±(3.11b)] we obtain

NCO , 1 2
3

2m 2d 2

and thus

^ 2 & ,
1

2
(3.13)

1
3

4m 2d 2 [md À 1, oscillatory terms averaging to zero]
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Fig. 1. The term NCO as a function of time for md À 1 (dashed), md 5 1 (solid), and

md ¿ 1 (dotted, practically zero). The right-hand scale represents ^ 2 & , the average probability

of negative chirality (APNC), as a function of time.

This result would imply the apparent loss of almost half the solar neutrino

flux, by no means incompatible with present data. We can obtain in these

cases (md À 1) a lower value of m if we set an upper value of d such as

the radius of the sun. In actual fact we can do somewhat better. If our

Gaussian wave function and corresponding Gaussian probability for neutrino

production is identified with the luminosity (Lang, 1992; Turck-ChieÂze et
al., 1988) of the solar core, we find consistently a value of d of , 0.1R (

(where R ( is the solar radius). This yields a neutrino mass À 3 3 10 2 15 eV.

Let us now consider the other range for md. For md ¿ 1, we have

NCO #
8

p 1/2 m 2d 2 #
`

0

d r exp( 2 r 2) 5 4m 2d 2 (3.14)

hence the conclusion that for very stringent localizations (e.g., d , 1/M w)

the oscillating term is negligible, as anticipated in the previous section.
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When md 5 1 (d 5 neutrino Compton wavelength), we must resort to

a numerical calculation (see Fig. 1). However, in this case, we can restrict

NCO and find its value for large time. In fact the cosine term in equation
(3.10) becomes

cos[2mt(1 1 r 2)1/2]

and since this oscillates rapidly for large values of mt, it may be

neglected. Thus

NCO , 4

p 1/2 #
`

0

d r
r 2

r 2 1 1
exp( 2 r 2) , 0.48

In this case the expectation value for the negative chirality average is

^ 2 & Ð ®
t ® `

0.76 [md 5 1] (3.15)

To the extent that this limit corresponds to the peak passage of the neutrino

flux through the earth, roughly 25% of the neutrino flux would be invisible.
In Fig. 1, we plot some numerical estimates of equation (3.10). Note

that for the case md À 1, since t À d for solar neutrinos, the dotted curve

of Fig. 1 does not correspond to experimental time values.

4. CONCLUSIONS

In this work we have suggested that a spin-1/2 particle produced in a

localized condition is subject to chiral oscillations reminiscent of zitterbeweg-

ung. Normally this effect is of little or no interest, but for neutrinos whose
absorption involves the V±A charged current the effect may be physically

significant. We have suggested that this phenomenon may well explain the

missing solar neutrino problem. Specifically, the effect is negligible for

md À 1. It predicts , 25% ª lossº for md , 1, and after averaging over

multiple oscillations, , 50% ª lossº for md À 1. With the identification of

d with the solar core, the critical neutrino mass m 5 1/d becomes 3 3 10 2 15

eV. If d is effectively of the order of the sun’ s core, then the production

process must be considered as an overall coherent effect, i.e., in contrast to

a sum of incoherent single-particle production with possibly much smaller

localizations. For laboratory experiments with localizations of the order of,

say, 1 m m one can exclude significant chiral oscillations if m À 10 2 1 eV.

Only one of our basic results coincides with more traditional oscillation
models: the neutrino must have a mass for this effect to exist. Apart from

this, the differences are notable. Our oscillations have periods determined,

for large md, by the particle’s Compton wavelength and ignores or is in

addition to any neutrino mixing. There may be objections to the apparent
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non Lorentz invariance of our final formulas, but we have already noted that

the initial localized form is clearly frame dependent. Explicitly, we have

chosen an inertial Lorentz frame centered on the sun for the initial Gaussian
neutrino wave function.

We do not intend in this paper to confront all neutrino oscillation data.

However, since the oscillation period is practically inversely proportional to

the mass (see Fig. 1), we expect the period of the muon neutrino to be much

smaller than that of the electron neutrino. Thus the atmospheric neutrino data

are not incompatible with neutrino masses such that the atmospheric distance
corresponds to one or more oscillations for the muon neutrino while far too

short for any significant electron neutrino oscillation. This argument could

be used to determine an upper limit to the latter mass and the order of

magnitude of the muon neutrino mass, once the localization distance datm is

fixed (no longer related of course to the sun’ s core). Rather than speculate

further on this, we wish to emphasize that the choice of an initial Gaussian
probability distribution was justified by its integrability, not on the basis of

physical arguments, and should therefore be treated with caution. On the

other hand, the considerations in this work invite a serious study of the

appropriate creation Hamiltonian for weak interactions so as to permit the

derivation of the true energy eigenvalue solutions, after which a quantitative
calculation, even if only numerical, can be performed.

We conclude with a short list of the questions which this work has

stimulated. First, what is the creation Hamiltonian of the weak interactions?

How does this Hamiltonian produce a well-known but often ignored fact,

common to all created particles: the localization of the wave function? Further-

more, is it correct after the first instance to use the free Hamiltonian as the
time evolution operator (as assumed in this work)? How are the negative-

frequency parts of the wave function to be interpreted if the reply to the

previous question is affirmative? Finally, can all the known oscillation data

be explained within the context of chiral oscillations?
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